| | |
| | | * Header, with the fields enclosed by brackets [] replaced by your own identifying |
| | | * information: "Portions Copyright [year] [name of copyright owner]". |
| | | * |
| | | * Portions Copyright 2012 Dariusz Janny <dariusz.janny@gmail.com> |
| | | * Copyright 2013 ForgeRock AS. |
| | | * Portions Copyright 2013-2016 ForgeRock AS. |
| | | * |
| | | * Licensed to the Apache Software Foundation (ASF) under one or more |
| | | * contributor license agreements. See the NOTICE file distributed with |
| | | * this work for additional information regarding copyright ownership. |
| | |
| | | package org.opends.server.extensions; |
| | | |
| | | import java.security.MessageDigest; |
| | | import java.security.NoSuchAlgorithmException; |
| | | import java.util.Arrays; |
| | | import java.util.Random; |
| | | import java.util.regex.Matcher; |
| | | import java.util.regex.Pattern; |
| | | |
| | | import org.apache.commons.codec.Charsets; |
| | | |
| | | /** |
| | | * SHA2-based Unix crypt implementation. |
| | | * |
| | | * <p> |
| | | * Based on the C implementation released into the Public Domain by Ulrich |
| | | * Drepper <drepper@redhat.com> |
| | | * Based on the C implementation released into the Public Domain by Ulrich Drepper <drepper@redhat.com> |
| | | * http://www.akkadia.org/drepper/SHA-crypt.txt |
| | | * </p> |
| | | * |
| | | * <p> |
| | | * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers |
| | | * <ch@lathspell.de> and likewise put into the Public Domain. |
| | | * </p> |
| | | * |
| | | * Conversion to Kotlin and from there to Java in 2012 by Christian Hammers <ch@lathspell.de> and likewise put |
| | | * into the Public Domain. |
| | | * <p> |
| | | * This class is immutable and thread-safe. |
| | | * </p> |
| | |
| | | * @version $Id$ |
| | | * @since 1.7 |
| | | */ |
| | | static class B64 { |
| | | private static class B64 { |
| | | |
| | | /** |
| | | * Table with characters for Base64 transformation. |
| | |
| | | */ |
| | | private static final int ROUNDS_DEFAULT = 5000; |
| | | |
| | | /** |
| | | * Maximum number of rounds. |
| | | */ |
| | | /** Maximum number of rounds. */ |
| | | private static final int ROUNDS_MAX = 999999999; |
| | | |
| | | /** |
| | | * Minimum number of rounds. |
| | | */ |
| | | /** Minimum number of rounds. */ |
| | | private static final int ROUNDS_MIN = 1000; |
| | | |
| | | /** |
| | | * Prefix for optional rounds specification. |
| | | */ |
| | | /** Prefix for optional rounds specification. */ |
| | | private static final String ROUNDS_PREFIX = "rounds="; |
| | | |
| | | /** |
| | | * The MessageDigest algorithms. |
| | | */ |
| | | /** The MessageDigest algorithms. */ |
| | | private static final String SHA256_ALGORITHM = "SHA-256"; |
| | | |
| | | private static final String SHA512_ALGORITHM = "SHA-512"; |
| | | |
| | | /** |
| | | * The number of bytes the final hash value will have. |
| | | */ |
| | | /** The number of bytes the final hash value will have. */ |
| | | private static final int SHA256_BLOCKSIZE = 32; |
| | | |
| | | /** The prefixes that can be used to identify this crypt() variant (SHA-256). */ |
| | | private static final String SHA256_PREFIX = "$5$"; |
| | | |
| | | /** The number of bytes the final hash value will have (SHA-512 variant). */ |
| | | private static final int SHA512_BLOCKSIZE = 64; |
| | | |
| | | /** |
| | | * The prefixes that can be used to identify this crypt() variant. |
| | | */ |
| | | static final String SHA256_PREFIX = "$5$"; |
| | | /** The prefixes that can be used to identify this crypt() variant (SHA-512). */ |
| | | private static final String SHA512_PREFIX = "$6$"; |
| | | |
| | | static final String SHA512_PREFIX = "$6$"; |
| | | |
| | | /** The pattern to match valid salt values. */ |
| | | private static final Pattern SALT_PATTERN = Pattern |
| | | .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*"); |
| | | |
| | | /** |
| | | * Returns the magic string denoting the SHA-256 scheme is being used. |
| | | * |
| | | * @return the magic string |
| | | */ |
| | | public static String getMagicSHA256Prefix() |
| | | static String getMagicSHA256Prefix() |
| | | { |
| | | return SHA256_PREFIX; |
| | | } |
| | | |
| | | |
| | | |
| | | /** |
| | | * Returns the magic string denoting the SHA-512 scheme is being used. |
| | | * |
| | | * @return the magic string |
| | | */ |
| | | public static String getMagicSHA512Prefix() |
| | | static String getMagicSHA512Prefix() |
| | | { |
| | | return SHA512_PREFIX; |
| | | } |
| | | |
| | | |
| | | |
| | | /** |
| | | * Generates a libc crypt() compatible "$5$" hash value with random salt. |
| | | * |
| | | * <p> |
| | | * See {@link Crypt#crypt(String, String)} for details. |
| | | * |
| | | * @param keyBytes |
| | | * The plaintext that should be hashed. |
| | | * @throws Exception exception |
| | | * @return compatible "$5$" hash value with random sal |
| | | * plaintext to hash |
| | | * @return complete hash value |
| | | * @throws RuntimeException |
| | | * when a {@link java.security.NoSuchAlgorithmException} is caught. |
| | | */ |
| | | public static String sha256Crypt(byte[] keyBytes) throws Exception { |
| | | static String sha256Crypt(final byte[] keyBytes) { |
| | | return sha256Crypt(keyBytes, null); |
| | | } |
| | | |
| | | /** |
| | | * Generates a libc6 crypt() compatible "$5$" hash value. |
| | | * |
| | | * <p> |
| | | * See {@link Crypt#crypt(String, String)} for details. |
| | | * |
| | | * @param keyBytes |
| | | * The plaintext that should be hashed. |
| | | * plaintext to hash |
| | | * @param salt |
| | | * The real salt value without prefix or "rounds=". |
| | | * @throws Exception exception |
| | | * @return compatible "$5$" hash value |
| | | * real salt value without prefix or "rounds=" |
| | | * @return complete hash value including salt |
| | | * @throws IllegalArgumentException |
| | | * if the salt does not match the allowed pattern |
| | | * @throws RuntimeException |
| | | * when a {@link java.security.NoSuchAlgorithmException} is caught. |
| | | */ |
| | | public static String sha256Crypt(byte[] keyBytes, String salt) |
| | | throws Exception { |
| | | static String sha256Crypt(final byte[] keyBytes, String salt) { |
| | | if (salt == null) { |
| | | salt = SHA256_PREFIX + B64.getRandomSalt(8); |
| | | } |
| | | return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, |
| | | SHA256_ALGORITHM); |
| | | return sha2Crypt(keyBytes, salt, SHA256_PREFIX, SHA256_BLOCKSIZE, SHA256_ALGORITHM); |
| | | } |
| | | |
| | | /** |
| | | * Generates a libc6 crypt() compatible "$5$" or "$6$" SHA2 based hash value. |
| | | * |
| | | * This is a nearly line by line conversion of the original C function. The |
| | | * numbered comments are from the algorithm description, the short C-style |
| | | * ones from the original C code and the ones with "Remark" from me. |
| | | * |
| | | * <p> |
| | | * This is a nearly line by line conversion of the original C function. The numbered comments are from the algorithm |
| | | * description, the short C-style ones from the original C code and the ones with "Remark" from me. |
| | | * <p> |
| | | * See {@link Crypt#crypt(String, String)} for details. |
| | | * |
| | | * @param keyBytes |
| | | * The plaintext that should be hashed. |
| | | * @param salt_string |
| | | * The real salt value without prefix or "rounds=". |
| | | * plaintext to hash |
| | | * @param salt |
| | | * real salt value without prefix or "rounds=" |
| | | * @param saltPrefix |
| | | * Either $5$ or $6$. |
| | | * either $5$ or $6$ |
| | | * @param blocksize |
| | | * A value that differs between $5$ and $6$. |
| | | * a value that differs between $5$ and $6$ |
| | | * @param algorithm |
| | | * The MessageDigest algorithm identifier string. |
| | | * @throws Exception exception |
| | | * @return The complete hash value including prefix and salt. |
| | | * {@link MessageDigest} algorithm identifier string |
| | | * @return complete hash value including prefix and salt |
| | | * @throws IllegalArgumentException |
| | | * if the given salt is <code>null</code> or does not match the allowed pattern |
| | | * @throws IllegalArgumentException |
| | | * when a {@link NoSuchAlgorithmException} is caught |
| | | * @see MessageDigestAlgorithms |
| | | */ |
| | | private static String sha2Crypt(byte[] keyBytes, String salt, |
| | | String saltPrefix, int blocksize, String algorithm) throws Exception { |
| | | int keyLen = keyBytes.length; |
| | | private static String sha2Crypt(final byte[] keyBytes, final String salt, final String saltPrefix, |
| | | final int blocksize, final String algorithm) { |
| | | |
| | | final int keyLen = keyBytes.length; |
| | | |
| | | // Extracts effective salt and the number of rounds from the given salt. |
| | | int rounds = ROUNDS_DEFAULT; |
| | | boolean roundsCustom = false; |
| | | if (salt == null) { |
| | | throw new IllegalArgumentException("Invalid salt value: null"); |
| | | throw new IllegalArgumentException("Salt must not be null"); |
| | | } |
| | | Pattern p = Pattern |
| | | .compile("^\\$([56])\\$(rounds=(\\d+)\\$)?([\\.\\/a-zA-Z0-9]{1,16}).*"); |
| | | Matcher m = p.matcher(salt); |
| | | if (m == null || !m.find()) { |
| | | |
| | | final Matcher m = SALT_PATTERN.matcher(salt); |
| | | if (!m.find()) { |
| | | throw new IllegalArgumentException("Invalid salt value: " + salt); |
| | | } |
| | | if (m.group(3) != null) { |
| | |
| | | rounds = Math.max(ROUNDS_MIN, Math.min(ROUNDS_MAX, rounds)); |
| | | roundsCustom = true; |
| | | } |
| | | String saltString = m.group(4); |
| | | byte[] saltBytes = saltString.getBytes("UTF-8"); |
| | | int saltLen = saltBytes.length; |
| | | final String saltString = m.group(4); |
| | | final byte[] saltBytes = saltString.getBytes(Charsets.UTF_8); |
| | | final int saltLen = saltBytes.length; |
| | | |
| | | // 1. start digest A |
| | | // Prepare for the real work. |
| | | MessageDigest ctx = MessageDigest.getInstance(algorithm); |
| | | MessageDigest ctx = getDigest(algorithm); |
| | | |
| | | // 2. the password string is added to digest A |
| | | /* |
| | | * Add the key string. |
| | | */ |
| | | /* |
| | | * Add the key string. |
| | | */ |
| | | ctx.update(keyBytes); |
| | | |
| | | // 3. the salt string is added to digest A. This is just the salt string |
| | |
| | | // and /possibly/ allows a plain text attack. Since the rounds=<N> |
| | | // specification should never be added this would also create an |
| | | // inconsistency. |
| | | /* |
| | | * The last part is the salt string. This must be at most 16 characters and |
| | | * it ends at the first `$' character (for compatibility with existing |
| | | * implementations). |
| | | */ |
| | | /* |
| | | * The last part is the salt string. This must be at most 16 characters and it ends at the first `$' character |
| | | * (for compatibility with existing implementations). |
| | | */ |
| | | ctx.update(saltBytes); |
| | | |
| | | // 4. start digest B |
| | | /* |
| | | * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final |
| | | * result will be added to the first context. |
| | | */ |
| | | MessageDigest altCtx = MessageDigest.getInstance(algorithm); |
| | | /* |
| | | * Compute alternate sha512 sum with input KEY, SALT, and KEY. The final result will be added to the first |
| | | * context. |
| | | */ |
| | | MessageDigest altCtx = getDigest(algorithm); |
| | | |
| | | // 5. add the password to digest B |
| | | /* |
| | | * Add key. |
| | | */ |
| | | /* |
| | | * Add key. |
| | | */ |
| | | altCtx.update(keyBytes); |
| | | |
| | | // 6. add the salt string to digest B |
| | | /* |
| | | * Add salt. |
| | | */ |
| | | /* |
| | | * Add salt. |
| | | */ |
| | | altCtx.update(saltBytes); |
| | | |
| | | // 7. add the password again to digest B |
| | | /* |
| | | * Add key again. |
| | | */ |
| | | /* |
| | | * Add key again. |
| | | */ |
| | | altCtx.update(keyBytes); |
| | | |
| | | // 8. finish digest B |
| | | /* |
| | | * Now get result of this (32 bytes) and add it to the other context. |
| | | */ |
| | | /* |
| | | * Now get result of this (32 bytes) and add it to the other context. |
| | | */ |
| | | byte[] altResult = altCtx.digest(); |
| | | |
| | | // 9. For each block of 32 or 64 bytes in the password string (excluding |
| | | // the terminating NUL in the C representation), add digest B to digest A |
| | | /* |
| | | * Add for any character in the key one byte of the alternate sum. |
| | | */ |
| | | /* |
| | | * (Remark: the C code comment seems wrong for key length > 32!) |
| | | */ |
| | | /* |
| | | * Add for any character in the key one byte of the alternate sum. |
| | | */ |
| | | /* |
| | | * (Remark: the C code comment seems wrong for key length > 32!) |
| | | */ |
| | | int cnt = keyBytes.length; |
| | | while (cnt > blocksize) { |
| | | ctx.update(altResult, 0, blocksize); |
| | |
| | | // |
| | | // NB: this step differs significantly from the MD5 algorithm. It |
| | | // adds more randomness. |
| | | /* |
| | | * Take the binary representation of the length of the key and for every 1 |
| | | * add the alternate sum, for every 0 the key. |
| | | */ |
| | | /* |
| | | * Take the binary representation of the length of the key and for every 1 add the alternate sum, for every 0 |
| | | * the key. |
| | | */ |
| | | cnt = keyBytes.length; |
| | | while (cnt > 0) { |
| | | if ((cnt & 1) != 0) { |
| | |
| | | } |
| | | |
| | | // 12. finish digest A |
| | | /* |
| | | * Create intermediate result. |
| | | */ |
| | | /* |
| | | * Create intermediate result. |
| | | */ |
| | | altResult = ctx.digest(); |
| | | |
| | | // 13. start digest DP |
| | | /* |
| | | * Start computation of P byte sequence. |
| | | */ |
| | | altCtx = MessageDigest.getInstance(algorithm); |
| | | /* |
| | | * Start computation of P byte sequence. |
| | | */ |
| | | altCtx = getDigest(algorithm); |
| | | |
| | | // 14. for every byte in the password (excluding the terminating NUL byte |
| | | // in the C representation of the string) |
| | | // |
| | | // add the password to digest DP |
| | | /* |
| | | * For every character in the password add the entire password. |
| | | */ |
| | | /* |
| | | * For every character in the password add the entire password. |
| | | */ |
| | | for (int i = 1; i <= keyLen; i++) { |
| | | altCtx.update(keyBytes); |
| | | } |
| | | |
| | | // 15. finish digest DP |
| | | /* |
| | | * Finish the digest. |
| | | */ |
| | | /* |
| | | * Finish the digest. |
| | | */ |
| | | byte[] tempResult = altCtx.digest(); |
| | | |
| | | // 16. produce byte sequence P of the same length as the password where |
| | |
| | | // |
| | | // b) for the remaining N (up to 31 or 63) bytes use the first N |
| | | // bytes of digest DP |
| | | /* |
| | | * Create byte sequence P. |
| | | */ |
| | | byte[] pBytes = new byte[keyLen]; |
| | | /* |
| | | * Create byte sequence P. |
| | | */ |
| | | final byte[] pBytes = new byte[keyLen]; |
| | | int cp = 0; |
| | | while (cp < keyLen - blocksize) { |
| | | System.arraycopy(tempResult, 0, pBytes, cp, blocksize); |
| | |
| | | System.arraycopy(tempResult, 0, pBytes, cp, keyLen - cp); |
| | | |
| | | // 17. start digest DS |
| | | /* |
| | | * Start computation of S byte sequence. |
| | | */ |
| | | altCtx = MessageDigest.getInstance(algorithm); |
| | | /* |
| | | * Start computation of S byte sequence. |
| | | */ |
| | | altCtx = getDigest(algorithm); |
| | | |
| | | // 18. repeast the following 16+A[0] times, where A[0] represents the first |
| | | // byte in digest A interpreted as an 8-bit unsigned value |
| | | // |
| | | // add the salt to digest DS |
| | | /* |
| | | * For every character in the password add the entire password. |
| | | */ |
| | | /* |
| | | * For every character in the password add the entire password. |
| | | */ |
| | | for (int i = 1; i <= 16 + (altResult[0] & 0xff); i++) { |
| | | altCtx.update(saltBytes); |
| | | } |
| | | |
| | | // 19. finish digest DS |
| | | /* |
| | | * Finish the digest. |
| | | */ |
| | | /* |
| | | * Finish the digest. |
| | | */ |
| | | tempResult = altCtx.digest(); |
| | | |
| | | // 20. produce byte sequence S of the same length as the salt string where |
| | |
| | | // |
| | | // b) for the remaining N (up to 31 or 63) bytes use the first N |
| | | // bytes of digest DS |
| | | /* |
| | | * Create byte sequence S. |
| | | */ |
| | | /* |
| | | * Create byte sequence S. |
| | | */ |
| | | // Remark: The salt is limited to 16 chars, how does this make sense? |
| | | byte[] sBytes = new byte[saltLen]; |
| | | final byte[] sBytes = new byte[saltLen]; |
| | | cp = 0; |
| | | while (cp < saltLen - blocksize) { |
| | | System.arraycopy(tempResult, 0, sBytes, cp, blocksize); |
| | |
| | | // digest produced in step 12. In the latter steps it is the digest |
| | | // produced in step 21.h. The following text uses the notation |
| | | // "digest A/C" to describe this behavior. |
| | | /* |
| | | * Repeatedly run the collected hash value through sha512 to burn CPU |
| | | * cycles. |
| | | */ |
| | | /* |
| | | * Repeatedly run the collected hash value through sha512 to burn CPU cycles. |
| | | */ |
| | | for (int i = 0; i <= rounds - 1; i++) { |
| | | // a) start digest C |
| | | /* |
| | | * New context. |
| | | */ |
| | | ctx = MessageDigest.getInstance(algorithm); |
| | | /* |
| | | * New context. |
| | | */ |
| | | ctx = getDigest(algorithm); |
| | | |
| | | // b) for odd round numbers add the byte sequence P to digest C |
| | | // c) for even round numbers add digest A/C |
| | | /* |
| | | * Add key or last result. |
| | | */ |
| | | /* |
| | | * Add key or last result. |
| | | */ |
| | | if ((i & 1) != 0) { |
| | | ctx.update(pBytes, 0, keyLen); |
| | | } else { |
| | |
| | | } |
| | | |
| | | // d) for all round numbers not divisible by 3 add the byte sequence S |
| | | /* |
| | | * Add salt for numbers not divisible by 3. |
| | | */ |
| | | /* |
| | | * Add salt for numbers not divisible by 3. |
| | | */ |
| | | if (i % 3 != 0) { |
| | | ctx.update(sBytes, 0, saltLen); |
| | | } |
| | | |
| | | // e) for all round numbers not divisible by 7 add the byte sequence P |
| | | /* |
| | | * Add key for numbers not divisible by 7. |
| | | */ |
| | | /* |
| | | * Add key for numbers not divisible by 7. |
| | | */ |
| | | if (i % 7 != 0) { |
| | | ctx.update(pBytes, 0, keyLen); |
| | | } |
| | | |
| | | // f) for odd round numbers add digest A/C |
| | | // g) for even round numbers add the byte sequence P |
| | | /* |
| | | * Add key or last result. |
| | | */ |
| | | /* |
| | | * Add key or last result. |
| | | */ |
| | | if ((i & 1) != 0) { |
| | | ctx.update(altResult, 0, blocksize); |
| | | } else { |
| | |
| | | } |
| | | |
| | | // h) finish digest C. |
| | | /* |
| | | * Create intermediate result. |
| | | */ |
| | | /* |
| | | * Create intermediate result. |
| | | */ |
| | | altResult = ctx.digest(); |
| | | } |
| | | |
| | |
| | | // c) the salt string truncated to 16 characters |
| | | // |
| | | // d) a '$' character |
| | | /* |
| | | * Now we can construct the result string. It consists of three parts. |
| | | */ |
| | | StringBuilder buffer = new StringBuilder(saltPrefix |
| | | + (roundsCustom ? ROUNDS_PREFIX + rounds + "$" : "") |
| | | + saltString + "$"); |
| | | /* |
| | | * Now we can construct the result string. It consists of three parts. |
| | | */ |
| | | final StringBuilder buffer = new StringBuilder(saltPrefix); |
| | | if (roundsCustom) { |
| | | buffer.append(ROUNDS_PREFIX); |
| | | buffer.append(rounds); |
| | | buffer.append("$"); |
| | | } |
| | | buffer.append(saltString); |
| | | buffer.append("$"); |
| | | |
| | | // e) the base-64 encoded final C digest. The encoding used is as |
| | | // follows: |
| | |
| | | // characters as output for SHA-512 and SHA-512 respectively. |
| | | |
| | | // This was just a safeguard in the C implementation: |
| | | // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + |
| | | // salt_string.length() + 1 + 86 + 1; |
| | | // int buflen = salt_prefix.length() - 1 + ROUNDS_PREFIX.length() + 9 + 1 + salt_string.length() + 1 + 86 + 1; |
| | | |
| | | if (blocksize == 32) { |
| | | B64.b64from24bit(altResult[0], altResult[10], altResult[20], 4, buffer); |
| | |
| | | B64.b64from24bit((byte) 0, (byte) 0, altResult[63], 2, buffer); |
| | | } |
| | | |
| | | /* |
| | | * Clear the buffer for the intermediate result so that people attaching to |
| | | * processes or reading core dumps cannot get any information. |
| | | */ |
| | | /* |
| | | * Clear the buffer for the intermediate result so that people attaching to processes or reading core dumps |
| | | * cannot get any information. |
| | | */ |
| | | // Is there a better way to do this with the JVM? |
| | | Arrays.fill(tempResult, (byte) 0); |
| | | Arrays.fill(pBytes, (byte) 0); |
| | |
| | | |
| | | /** |
| | | * Generates a libc crypt() compatible "$6$" hash value with random salt. |
| | | * |
| | | * <p> |
| | | * See {@link Crypt#crypt(String, String)} for details. |
| | | * |
| | | * @param keyBytes |
| | | * The plaintext that should be hashed. |
| | | * @throws Exception exception |
| | | * @return compatible "$6$" hash value with random salt |
| | | * plaintext to hash |
| | | * @return complete hash value |
| | | * @throws RuntimeException |
| | | * when a {@link java.security.NoSuchAlgorithmException} is caught. |
| | | */ |
| | | public static String sha512Crypt(byte[] keyBytes) throws Exception { |
| | | static String sha512Crypt(final byte[] keyBytes) { |
| | | return sha512Crypt(keyBytes, null); |
| | | } |
| | | |
| | | /** |
| | | * Generates a libc6 crypt() compatible "$6$" hash value. |
| | | * |
| | | * <p> |
| | | * See {@link Crypt#crypt(String, String)} for details. |
| | | * |
| | | * @param keyBytes |
| | | * The plaintext that should be hashed. |
| | | * plaintext to hash |
| | | * @param salt |
| | | * The real salt value without prefix or "rounds=". |
| | | * @throws Exception exception |
| | | * @return compatible "$6$" hash value |
| | | * real salt value without prefix or "rounds=" |
| | | * @return complete hash value including salt |
| | | * @throws IllegalArgumentException |
| | | * if the salt does not match the allowed pattern |
| | | * @throws RuntimeException |
| | | * when a {@link java.security.NoSuchAlgorithmException} is caught. |
| | | */ |
| | | public static String sha512Crypt(byte[] keyBytes, String salt) |
| | | throws Exception { |
| | | static String sha512Crypt(final byte[] keyBytes, String salt) { |
| | | if (salt == null) { |
| | | salt = SHA512_PREFIX + B64.getRandomSalt(8); |
| | | } |
| | | return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, |
| | | SHA512_ALGORITHM); |
| | | return sha2Crypt(keyBytes, salt, SHA512_PREFIX, SHA512_BLOCKSIZE, SHA512_ALGORITHM); |
| | | } |
| | | |
| | | private static MessageDigest getDigest(final String algorithm) { |
| | | try { |
| | | return MessageDigest.getInstance(algorithm); |
| | | } catch (final NoSuchAlgorithmException e) { |
| | | throw new IllegalArgumentException(e); |
| | | } |
| | | } |
| | | |
| | | } |